HITS-CLIP yields genome-wide insights into brain alternative RNA processing

HITS-CLIP yields genome-wide insights into brain alternative RNA processing by Donny D. Licatalosi et. al. published in Nature. 2008 November 27; 456(7221): 464–469.

Abstract

Protein-RNA interactions play critical roles in all aspects of gene expression. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP).

HITS-CLIP analysis of the neuron-specific splicing factor Nova2 revealed extremely reproducible RNA binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo.

HITS-CLIP revealed a large number of Nova-RNA interactions in 3′ UTRs, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.